3.2.4 \(\int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx\) [104]

3.2.4.1 Optimal result
3.2.4.2 Mathematica [A] (verified)
3.2.4.3 Rubi [A] (verified)
3.2.4.4 Maple [B] (verified)
3.2.4.5 Fricas [A] (verification not implemented)
3.2.4.6 Sympy [F]
3.2.4.7 Maxima [A] (verification not implemented)
3.2.4.8 Giac [F(-2)]
3.2.4.9 Mupad [F(-1)]

3.2.4.1 Optimal result

Integrand size = 27, antiderivative size = 236 \[ \int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {8 b x \sqrt {-1+c x} \sqrt {1+c x}}{15 c^5 \sqrt {d-c^2 d x^2}}-\frac {4 b x^3 \sqrt {-1+c x} \sqrt {1+c x}}{45 c^3 \sqrt {d-c^2 d x^2}}-\frac {b x^5 \sqrt {-1+c x} \sqrt {1+c x}}{25 c \sqrt {d-c^2 d x^2}}-\frac {8 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{15 c^6 d}-\frac {4 x^2 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{15 c^4 d}-\frac {x^4 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{5 c^2 d} \]

output
-8/15*b*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^5/(-c^2*d*x^2+d)^(1/2)-4/45*b*x^3* 
(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^3/(-c^2*d*x^2+d)^(1/2)-1/25*b*x^5*(c*x-1)^(1 
/2)*(c*x+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)-8/15*(a+b*arccosh(c*x))*(-c^2*d*x 
^2+d)^(1/2)/c^6/d-4/15*x^2*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/c^4/d-1 
/5*x^4*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2/d
 
3.2.4.2 Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.59 \[ \int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\frac {\sqrt {d-c^2 d x^2} \left (b c x \sqrt {-1+c x} \sqrt {1+c x} \left (120+20 c^2 x^2+9 c^4 x^4\right )-15 a \left (-8+4 c^2 x^2+c^4 x^4+3 c^6 x^6\right )-15 b \left (-8+4 c^2 x^2+c^4 x^4+3 c^6 x^6\right ) \text {arccosh}(c x)\right )}{225 c^6 d (-1+c x) (1+c x)} \]

input
Integrate[(x^5*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]
 
output
(Sqrt[d - c^2*d*x^2]*(b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(120 + 20*c^2*x^2 
 + 9*c^4*x^4) - 15*a*(-8 + 4*c^2*x^2 + c^4*x^4 + 3*c^6*x^6) - 15*b*(-8 + 4 
*c^2*x^2 + c^4*x^4 + 3*c^6*x^6)*ArcCosh[c*x]))/(225*c^6*d*(-1 + c*x)*(1 + 
c*x))
 
3.2.4.3 Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.05, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6353, 15, 6353, 15, 6329, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx\)

\(\Big \downarrow \) 6353

\(\displaystyle \frac {4 \int \frac {x^3 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}}dx}{5 c^2}-\frac {b \sqrt {c x-1} \sqrt {c x+1} \int x^4dx}{5 c \sqrt {d-c^2 d x^2}}-\frac {x^4 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{5 c^2 d}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {4 \int \frac {x^3 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}}dx}{5 c^2}-\frac {x^4 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{5 c^2 d}-\frac {b x^5 \sqrt {c x-1} \sqrt {c x+1}}{25 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 6353

\(\displaystyle \frac {4 \left (\frac {2 \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}}dx}{3 c^2}-\frac {b \sqrt {c x-1} \sqrt {c x+1} \int x^2dx}{3 c \sqrt {d-c^2 d x^2}}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{3 c^2 d}\right )}{5 c^2}-\frac {x^4 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{5 c^2 d}-\frac {b x^5 \sqrt {c x-1} \sqrt {c x+1}}{25 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {4 \left (\frac {2 \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}}dx}{3 c^2}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{3 c^2 d}-\frac {b x^3 \sqrt {c x-1} \sqrt {c x+1}}{9 c \sqrt {d-c^2 d x^2}}\right )}{5 c^2}-\frac {x^4 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{5 c^2 d}-\frac {b x^5 \sqrt {c x-1} \sqrt {c x+1}}{25 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 6329

\(\displaystyle \frac {4 \left (\frac {2 \left (-\frac {b \sqrt {c x-1} \sqrt {c x+1} \int 1dx}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{c^2 d}\right )}{3 c^2}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{3 c^2 d}-\frac {b x^3 \sqrt {c x-1} \sqrt {c x+1}}{9 c \sqrt {d-c^2 d x^2}}\right )}{5 c^2}-\frac {x^4 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{5 c^2 d}-\frac {b x^5 \sqrt {c x-1} \sqrt {c x+1}}{25 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {x^4 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{5 c^2 d}+\frac {4 \left (-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{3 c^2 d}+\frac {2 \left (-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{c^2 d}-\frac {b x \sqrt {c x-1} \sqrt {c x+1}}{c \sqrt {d-c^2 d x^2}}\right )}{3 c^2}-\frac {b x^3 \sqrt {c x-1} \sqrt {c x+1}}{9 c \sqrt {d-c^2 d x^2}}\right )}{5 c^2}-\frac {b x^5 \sqrt {c x-1} \sqrt {c x+1}}{25 c \sqrt {d-c^2 d x^2}}\)

input
Int[(x^5*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]
 
output
-1/25*(b*x^5*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2]) - (x^4* 
Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(5*c^2*d) + (4*(-1/9*(b*x^3*Sqrt 
[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2]) - (x^2*Sqrt[d - c^2*d*x^ 
2]*(a + b*ArcCosh[c*x]))/(3*c^2*d) + (2*(-((b*x*Sqrt[-1 + c*x]*Sqrt[1 + c* 
x])/(c*Sqrt[d - c^2*d*x^2])) - (Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/ 
(c^2*d)))/(3*c^2)))/(5*c^2)
 

3.2.4.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 6329
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p 
+ 1))), x] - Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + 
 c*x)^p)]   Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x 
])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && 
GtQ[n, 0] && NeQ[p, -1]
 

rule 6353
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_ 
.)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a 
+ b*ArcCosh[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2 
*p + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x], x] 
- Simp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x) 
^p)]   Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*Ar 
cCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2* 
d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]
 
3.2.4.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(669\) vs. \(2(200)=400\).

Time = 0.79 (sec) , antiderivative size = 670, normalized size of antiderivative = 2.84

method result size
default \(a \left (-\frac {x^{4} \sqrt {-c^{2} d \,x^{2}+d}}{5 c^{2} d}+\frac {-\frac {4 x^{2} \sqrt {-c^{2} d \,x^{2}+d}}{15 c^{2} d}-\frac {8 \sqrt {-c^{2} d \,x^{2}+d}}{15 d \,c^{4}}}{c^{2}}\right )+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (16 c^{6} x^{6}-28 c^{4} x^{4}+16 \sqrt {c x +1}\, \sqrt {c x -1}\, c^{5} x^{5}+13 c^{2} x^{2}-20 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}+5 \sqrt {c x -1}\, \sqrt {c x +1}\, c x -1\right ) \left (-1+5 \,\operatorname {arccosh}\left (c x \right )\right )}{800 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 c^{4} x^{4}-5 c^{2} x^{2}+4 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}-3 \sqrt {c x -1}\, \sqrt {c x +1}\, c x +1\right ) \left (-1+3 \,\operatorname {arccosh}\left (c x \right )\right )}{288 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (-1+\operatorname {arccosh}\left (c x \right )\right )}{16 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (1+\operatorname {arccosh}\left (c x \right )\right )}{16 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-4 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}+4 c^{4} x^{4}+3 \sqrt {c x -1}\, \sqrt {c x +1}\, c x -5 c^{2} x^{2}+1\right ) \left (1+3 \,\operatorname {arccosh}\left (c x \right )\right )}{288 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-16 \sqrt {c x +1}\, \sqrt {c x -1}\, c^{5} x^{5}+16 c^{6} x^{6}+20 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}-28 c^{4} x^{4}-5 \sqrt {c x -1}\, \sqrt {c x +1}\, c x +13 c^{2} x^{2}-1\right ) \left (1+5 \,\operatorname {arccosh}\left (c x \right )\right )}{800 c^{6} d \left (c^{2} x^{2}-1\right )}\right )\) \(670\)
parts \(a \left (-\frac {x^{4} \sqrt {-c^{2} d \,x^{2}+d}}{5 c^{2} d}+\frac {-\frac {4 x^{2} \sqrt {-c^{2} d \,x^{2}+d}}{15 c^{2} d}-\frac {8 \sqrt {-c^{2} d \,x^{2}+d}}{15 d \,c^{4}}}{c^{2}}\right )+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (16 c^{6} x^{6}-28 c^{4} x^{4}+16 \sqrt {c x +1}\, \sqrt {c x -1}\, c^{5} x^{5}+13 c^{2} x^{2}-20 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}+5 \sqrt {c x -1}\, \sqrt {c x +1}\, c x -1\right ) \left (-1+5 \,\operatorname {arccosh}\left (c x \right )\right )}{800 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 c^{4} x^{4}-5 c^{2} x^{2}+4 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}-3 \sqrt {c x -1}\, \sqrt {c x +1}\, c x +1\right ) \left (-1+3 \,\operatorname {arccosh}\left (c x \right )\right )}{288 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (-1+\operatorname {arccosh}\left (c x \right )\right )}{16 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (1+\operatorname {arccosh}\left (c x \right )\right )}{16 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {5 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-4 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}+4 c^{4} x^{4}+3 \sqrt {c x -1}\, \sqrt {c x +1}\, c x -5 c^{2} x^{2}+1\right ) \left (1+3 \,\operatorname {arccosh}\left (c x \right )\right )}{288 c^{6} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-16 \sqrt {c x +1}\, \sqrt {c x -1}\, c^{5} x^{5}+16 c^{6} x^{6}+20 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{3} x^{3}-28 c^{4} x^{4}-5 \sqrt {c x -1}\, \sqrt {c x +1}\, c x +13 c^{2} x^{2}-1\right ) \left (1+5 \,\operatorname {arccosh}\left (c x \right )\right )}{800 c^{6} d \left (c^{2} x^{2}-1\right )}\right )\) \(670\)

input
int(x^5*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)
 
output
a*(-1/5*x^4/c^2/d*(-c^2*d*x^2+d)^(1/2)+4/5/c^2*(-1/3*x^2/c^2/d*(-c^2*d*x^2 
+d)^(1/2)-2/3/d/c^4*(-c^2*d*x^2+d)^(1/2)))+b*(-1/800*(-d*(c^2*x^2-1))^(1/2 
)*(16*c^6*x^6-28*c^4*x^4+16*(c*x+1)^(1/2)*(c*x-1)^(1/2)*c^5*x^5+13*c^2*x^2 
-20*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c^3*x^3+5*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x- 
1)*(-1+5*arccosh(c*x))/c^6/d/(c^2*x^2-1)-5/288*(-d*(c^2*x^2-1))^(1/2)*(4*c 
^4*x^4-5*c^2*x^2+4*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c^3*x^3-3*(c*x-1)^(1/2)*(c* 
x+1)^(1/2)*c*x+1)*(-1+3*arccosh(c*x))/c^6/d/(c^2*x^2-1)-5/16*(-d*(c^2*x^2- 
1))^(1/2)*((c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+c^2*x^2-1)*(-1+arccosh(c*x))/c^ 
6/d/(c^2*x^2-1)-5/16*(-d*(c^2*x^2-1))^(1/2)*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)* 
c*x+c^2*x^2-1)*(1+arccosh(c*x))/c^6/d/(c^2*x^2-1)-5/288*(-d*(c^2*x^2-1))^( 
1/2)*(-4*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c^3*x^3+4*c^4*x^4+3*(c*x-1)^(1/2)*(c* 
x+1)^(1/2)*c*x-5*c^2*x^2+1)*(1+3*arccosh(c*x))/c^6/d/(c^2*x^2-1)-1/800*(-d 
*(c^2*x^2-1))^(1/2)*(-16*(c*x+1)^(1/2)*(c*x-1)^(1/2)*c^5*x^5+16*c^6*x^6+20 
*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c^3*x^3-28*c^4*x^4-5*(c*x-1)^(1/2)*(c*x+1)^(1 
/2)*c*x+13*c^2*x^2-1)*(1+5*arccosh(c*x))/c^6/d/(c^2*x^2-1))
 
3.2.4.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.75 \[ \int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {15 \, {\left (3 \, b c^{6} x^{6} + b c^{4} x^{4} + 4 \, b c^{2} x^{2} - 8 \, b\right )} \sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (9 \, b c^{5} x^{5} + 20 \, b c^{3} x^{3} + 120 \, b c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} + 15 \, {\left (3 \, a c^{6} x^{6} + a c^{4} x^{4} + 4 \, a c^{2} x^{2} - 8 \, a\right )} \sqrt {-c^{2} d x^{2} + d}}{225 \, {\left (c^{8} d x^{2} - c^{6} d\right )}} \]

input
integrate(x^5*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas 
")
 
output
-1/225*(15*(3*b*c^6*x^6 + b*c^4*x^4 + 4*b*c^2*x^2 - 8*b)*sqrt(-c^2*d*x^2 + 
 d)*log(c*x + sqrt(c^2*x^2 - 1)) - (9*b*c^5*x^5 + 20*b*c^3*x^3 + 120*b*c*x 
)*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1) + 15*(3*a*c^6*x^6 + a*c^4*x^4 + 4 
*a*c^2*x^2 - 8*a)*sqrt(-c^2*d*x^2 + d))/(c^8*d*x^2 - c^6*d)
 
3.2.4.6 Sympy [F]

\[ \int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x^{5} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

input
integrate(x**5*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(1/2),x)
 
output
Integral(x**5*(a + b*acosh(c*x))/sqrt(-d*(c*x - 1)*(c*x + 1)), x)
 
3.2.4.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.83 \[ \int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {1}{15} \, {\left (\frac {3 \, \sqrt {-c^{2} d x^{2} + d} x^{4}}{c^{2} d} + \frac {4 \, \sqrt {-c^{2} d x^{2} + d} x^{2}}{c^{4} d} + \frac {8 \, \sqrt {-c^{2} d x^{2} + d}}{c^{6} d}\right )} b \operatorname {arcosh}\left (c x\right ) - \frac {1}{15} \, {\left (\frac {3 \, \sqrt {-c^{2} d x^{2} + d} x^{4}}{c^{2} d} + \frac {4 \, \sqrt {-c^{2} d x^{2} + d} x^{2}}{c^{4} d} + \frac {8 \, \sqrt {-c^{2} d x^{2} + d}}{c^{6} d}\right )} a + \frac {{\left (9 \, c^{4} \sqrt {-d} x^{5} + 20 \, c^{2} \sqrt {-d} x^{3} + 120 \, \sqrt {-d} x\right )} b}{225 \, c^{5} d} \]

input
integrate(x^5*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima 
")
 
output
-1/15*(3*sqrt(-c^2*d*x^2 + d)*x^4/(c^2*d) + 4*sqrt(-c^2*d*x^2 + d)*x^2/(c^ 
4*d) + 8*sqrt(-c^2*d*x^2 + d)/(c^6*d))*b*arccosh(c*x) - 1/15*(3*sqrt(-c^2* 
d*x^2 + d)*x^4/(c^2*d) + 4*sqrt(-c^2*d*x^2 + d)*x^2/(c^4*d) + 8*sqrt(-c^2* 
d*x^2 + d)/(c^6*d))*a + 1/225*(9*c^4*sqrt(-d)*x^5 + 20*c^2*sqrt(-d)*x^3 + 
120*sqrt(-d)*x)*b/(c^5*d)
 
3.2.4.8 Giac [F(-2)]

Exception generated. \[ \int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(x^5*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.2.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x^5\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

input
int((x^5*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2),x)
 
output
int((x^5*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2), x)